CDF Farms in Run II

Stephen Wolbers CHEP2000

February 7-11, 2000

CDF Farms Group:

Jaroslav Antos, Antonio Chan, Paoti Chang, Yen-Chu Chen, Stephen Wolbers, GP Yeh, Ping Yeh

Fermilab Computing Division:

Mark Breitung, Troy Dawson, Jim Fromm, Lisa Giacchetti, Tanya Levshina, Igor Mandrichenko, Ray Pasetes, Marilyn Schweitzer, Karen Shepelak, Dane Skow

Outline

- Requirements for Run 2 computing
- Design
- Experience, including Mock Data Challenge 1
- Future -- MDC 2, Run 2, Higher rates and scaling

Requirements

- The CDF farms must have sufficient capacity for Run 2 Raw Data Reconstruction
- The farms also must provide capacity for any reprocessing needs
- Farms must be easy to configure and run
- The bookkeeping must be clear and easy to use
- Error handling must be excellent

Requirements

- Capacity
 - Rates: 75 Hz max (28 Hz average)
 - 250 Kbyte input event size
 - 60 Kbyte output event size
 - Translates to 20 Mbyte/s input (max) and 5
 Mbyte/sec output (max)
 - Substantially greater than Run I but not overwhelming in modern architectures

Requirements (CPU)

- CPU goal is <5 seconds/event on PIII/500
- Assuming 70% efficiency this translates to
 - 200 PIII/500 equivalents
 - 4200 SpecInt95
- Adding in reprocessing, simulation, responding to peak rates
 - 300-400 PIII/500 equivalents (150-200 duals)
 - 6300-8400 SpecInt95

Design/Model

Hardware

- Choose the most cost-effective CPU's for the compute-intensive computing
- This is currently the dual-Pentium architecture
- Network is fast and gigabit ethernet, with all machines being connected to a single or at most two large switches
- A large I/O system to handle the buffering of data to/from mass storage and to provide a place to split the data into physics datasets

Simple Model

Run II CDF PC Farm

Software Model

- Software consists of independent modules
 - Well defined interfaces
 - Common bookkeeping
 - Standardized error handling
- Choices
 - Python
 - MySQL database (internal database)
 - FBS (Farms Batch System) *
 - FIPC (Farms Interprocessor Communication) *
 - CDF Data Handling Software *
 - * Discussed in other CHEP talks

Conceptual Model of Run 2 Production System

List of Software Modules

- Coordinator
- Stager
- Dispatcher
- Reconstructor
- Collector
- Splitter
- Spooler

- Exporter
- Database Retriever
- Disk Manager
- Tape Manager
- Worker Node Manager
- Bookkeeper
- Messenger

Physics Analysis Requirements and Impact

- Raw Data Files come in ~8 flavors, or streams
 - 1 Gbyte input files
- Reconstruction produces inclusive summary files
 - 250 Mbyte output files
- Output Files must be split into ~8 physics datasets per input stream
 - Target 1 Gbyte files
 - About 20% overlap
- Leads to a complicated splitting/concatenation problem, as input and output streams range from tiny (<few percent) to quite large (10's of percent)

Prototype Farm/Mock Data Challenge 1

- A small prototype farm has been used to test software, study hardware performance, and provide small but significant CPU resources
- 4 I/O + 14 worker PII/400 dual Linux PC's
- Gigabit ethernet (I/O nodes/prototype farm)
- 100 Mbit ethernet (worker nodes and SGI)
- Useful and necessary step before scaling up to larger farms
- Expected data rates were achieved (20 Mbyte/s aggregate data transfer)

Prototype Farm

Mock Data Challenge 1 (CDF)

- Primarily a connectivity test, with the following components:
 - Level 3 (Monte Carlo input)
 - Data Logger
 - Tape robot/mass storage system
 - File catalog (database)
 - Production executable (with all detector components and reconstruction)
 - Farm I/O + worker nodes
 - CDF Data Handling System

Mock Data Challenge 1

- Monte Carlo events
 - 2 input streams
 - 6 output streams
 - 1 Gbyte files, trigger bits set in L3 for splitting events
- Data Flow
 - Approx. 100 Gbyte of data was generated
 - Processed through L3 using L3 executable
 - Logged and processed on the farms through the full offline reconstruction package

MDC1 - Data Flow

Stephen Wolbers

CHEP2000

February 7-11, 2000

MDC1 Farms

Worker Nodes

Future

- 50 new PC's are in place (PIII/500 duals) (Acquisition and testing was interesting)
- New I/O node is being acquired (SGI O2200)
- Plan to integrate I/O systems, Cisco 6509 switch, 50 PC's
- Prepare for rate test and MDC2 (April/May 2000)
- Use same system for CDF Engineering Run in Fall 2000

Stephen Wolbers

CHEP2000

February 7-11, 2000

Future (cont.)

- Run II begins March 1, 2001
- Farms must grow to accommodate the expected data rate
- All PC's will be purchased as late as possible
 - PC's will increase from 50 to 150 or more
 - I/O systems should be adequate for full Run II rate
 - Switch should have sufficient capacity

Future (software and process)

- Software must be completed, debugged, and made user-friendly and supportable.
- CDF experimenters will monitor the farm.
- CDF farm experts will debug, tune and watch over the farm.
- Looking for a smooth, easy to run system
 - Must run for many years
 - Would like it to run with little intervention

Far Future/possible scaling

- System should scale beyond design.
- Can add I/O capacity by increasing disk storage, tapedrives, CPU speed, adding Gbit ethernet or 10 Gbit ethernet when available.
- More PC's can be purchased.
- The switch has capacity.
- If all else fails the entire system can simply be cloned, but overall control and database access is a potential issue in this case.

Conclusion

- The CDF farm is rapidly coming together:
 - Hardware
 - Software design and implementation
- Capacity for large-scale tests is almost in place.
- Plans for full Run II rate are firm.
- Upgrade path to go beyond Run II nominal rates exists.